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Salient Object Detection via Two-Stage Graphs
Yi Liu , Jungong Han , Qiang Zhang, and Long Wang

Abstract— Despite recent advances made in salient object
detection using graph theory, the approach still suffers from
accuracy problems when the image is characterized by a complex
structure, either in the foreground or background, causing
erroneous saliency segmentation. This fundamental challenge is
mainly attributed to the fact that most existing graph-based
methods take only the adjacently spatial consistency among graph
nodes into consideration. In this paper, we tackle this issue
from a coarse-to-fine perspective and propose a two-stage-graphs
approach for salient object detection, in which two graphs having
the same nodes but different edges are employed. Specifically,
a weighted joint robust sparse representation model, rather than
the commonly used manifold ranking model, helps to compute
the saliency value of each node in the first-stage graph, thereby
providing a saliency map at the coarse level. In the second-
stage graph, along with the adjacently spatial consistency, a new
regionally spatial consistency among graph nodes is considered in
order to refine the coarse saliency map, assuring uniform saliency
assignment even in complex scenes. Particularly, the second
stage is generic enough to be integrated in existing salient
object detectors, enabling improved performance. Experimental
results on benchmark data sets validate the effectiveness and
superiority of the proposed scheme over related state-of-the-art
methods.

Index Terms— Salient object detection, two-stage graphs,
robust sparse representation, manifold ranking.

I. INTRODUCTION

SALIENCY detection aims to find the regions or objects
catching human eye attention in a scene for further

processing [1]. During the past two decades, research in this
field has grown in two pathways: eye fixation prediction in
human vision [2], [3] and salient object detection in computer
vision [4]–[8]. The former topic focuses on identifying the
fixation points of a human viewer at the first glance [9], [10],
whereas the latter topic tends to locate or/and segment the
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most conspicuous objects from the scene [11]. Because of its
low computational cost, salient object detection has emerged
as a powerful image pre-processing tool in image segmenta-
tion [12], object recognition [13], image retrieval [14], image
fusion [15], etc.

Recently, graph theory has been adopted in salient object
detection [6]–[8], [16]–[19] due to its simplicity and effi-
ciency. A typical graph-based saliency detection usually
consists of three algorithmic components. First, a graph
is constructed, including graph nodes,1 e.g., pixels [20],
patches [19], or superpixels [6]–[8], and graph edges,
i.e., node connections. Secondly, some seed nodes (i.e., back-
ground or foreground seed nodes) are selected to determine
the initial saliency values of nodes [6]–[8], [19], [20]. Finally,
saliency values of nodes are computed based on the initial
saliency values via some methods, such as manifold rank-
ing [6]–[8], [21], random walks ranking [21], etc.

In the graph-based methods, graph construction is a vital
issue, especially the graph edges that bridge the nodes. Most
graph-based methods adopt a regular graph constructed by
connecting each node with its neighbors [6]–[8], [19], in which
the spatial consistency within a local neighborhood is ade-
quately considered. Recently, the global contrast has been
taken into account by connecting each node with the boundary
nodes [8]. Moreover, any pairs of boundary nodes are con-
nected to achieve a close-loop graph [6]–[8], [19]. Another
important issue for the graph-based methods is the initial
saliency values of nodes (also called selection of seed nodes).
To this end, background seed nodes are usually abstracted
to determine the initial saliency values of nodes from the
boundary regions based on the boundary prior [6]–[8], [19].
While for other methods, the initial saliency values of nodes
rely on the coarse detection results [6], [21].

Existing graph-based salient object detection methods can
be divided into two categories: one-stage and two-stage scor-
ing, as shown in Fig. 1(a) and (b). In the first category,
as shown in Fig. 1(a), saliency is propagated via a one-
stage process [8], [19]. The initial saliency values of nodes
are determined merely by selecting background seed nodes,
which makes the whole system sensitive to the initial saliency
values. This can easily end up mislabeling some backgrounds
as foregrounds. Such an exemplar can be found in the last row
of Fig. 2(b) and (e), where some backgrounds are wrongly
detected as foregrounds.

In the second category, as shown in Fig. 1(b), saliency is
computed via a two-stage scoring process [6], [21]. In these
methods, the initial saliency values of graph nodes at the

1In this paper, we use node and superpixel interchangeably when we discuss
the graph or the image.
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Fig. 1. Illustrations of the proposed two-stage graphs against the previous
graph-based methods. Details are described in the text.

Fig. 2. Detection results of different graph-based salient object detection
methods. (a) Original images; (b) GS; (c) BSCA; (d) RW_MR; (e) MR;
(f) TLLT; (g) OUR; (h) Ground truth. (b) and (c) are one-stage based methods.
(d) - (f) are two-stage scoring based methods.

second stage are updated according to the coarse detection
results obtained from the first stage, which certainly enhances
the robustness of the initial saliency values (as shown in the
last row in Fig. 2(d) and (f)).

More importantly, those graph-based methods only consider
the adjacently spatial consistency, i.e., each node is connected
to its local neighbors.2 It is very clear that the two-stage
scoring based methods employ only the adjacently spatial
consistency at both stages, and also, the graph edges are not
updated in the second-stage graph, which means essentially
only a single graph is employed in the two-stage scoring
based methods. This degrades the uniformity of the detected
foregrounds and inevitably generates some “holes” in the
detected salient objects. For instance, as shown in the first
row of Fig. 2(b)-(f), the one-stage and two-stage scoring
based methods achieve poor foreground uniformity in the
nonhomogeneous regions. Especially, as shown in the second
row of Fig. 2, although the salient objects have almost the same
appearance within the inner regions, nonuniformity could still
be encountered when such methods are applied. Furthermore,
it is hard for the one-stage and two-stage scoring based
methods to separate the foreground from the background

2It is noted that, in some graphs, each node is not only connected to
the neighboring nodes, but also connected to the nodes sharing common
boundaries with its neighboring nodes. We still call this type of node
connections as the adjacently spatial consistency.

completely and uniformly in the complex scene. For example,
these methods fail to detect the foreground due to the similar
appearance between foreground and background (as displayed
in the third row of Fig. 2(b)-(f)) or complicated background
(as displayed in the last row of Fig. 2(b)-(f)). Such undesirable
detection results are attributed to the fact that the adjacently
spatial consistency can reflect the relationships between nodes
in the simple cases, but may fail in the nonhomogeneous
regions or complex scenes.

In this paper, we tackle the above-mentioned problems from
a coarse-to-fine perspective and propose a two-stage-graphs-
based salient object detection method, in which two graphs
having the same nodes but different edges are employed,
as illustrated in Fig. 1(c). In the first-stage graph, which
is analogous to most of existing graph-based methods,
the adjacently spatial consistency is considered such that
the spatial consistency within a local neighborhood can be
preserved, based on which the saliency maps at the coarse
level can be obtained. Once the coarse detection results are
obtained, the graph nodes can be divided into three categories,
i.e., potential foreground nodes, potential background nodes,
and uncertain nodes. Therefore, the major task in the second-
stage graph is to further determine the property of each
graph node. To this end, a novel graph structure is presented,
in which any pairs of potential foreground nodes (not neces-
sarily neighboring superpixels) are connected, and any pairs
of potential background nodes are likewise connected (we
call this regionally spatial consistency among graph nodes).
In other words, any pairs of potential foreground nodes are
treated as neighbors, and any pairs of potential background
nodes are treated as neighbors. In addition, each node is
connected to its spatial neighbors (i.e., the adjacently spatial
consistency). Consequently, in the second-stage graph, along
with the adjacently spatial consistency, a new regionally
spatial consistency among graph nodes is considered so as to
refine the coarse saliency map, facilitating saliency detection
in complex scenes. This obviously differs from the two-stage
scoring based methods, in which only the adjacently spatial
consistency among graph nodes is considered. In essence, two-
stage scoring achieves a coarse-to-fine perspective by simply
calculating the saliency values of nodes twice through two
stages on the same graph. Differently, our two-stage graphs
approach offers a novel coarse-to-fine perspective that employs
coarse node connections in the first-stage graph followed by a
node-connections refinement in the second-stage graph. Due to
the introduction of regionally spatial consistency, our second-
stage graph specifically promotes the foreground uniformity
and background suppression, as can be seen in Fig. 2.

In our approach, the initial saliency values and graph edges
(i.e., node connections) in the second-stage graph are mainly
determined by the coarse detection results from the first-stage
graph. Therefore, the computation of each node’s saliency
value for the first-stage graph plays an important role in
our proposed method. To this end, we propose a weighted
joint robust sparse representation (WJRSR) model to compute
the saliency value of each node in the first-stage graph,
which is more robust to the initial saliency values of nodes
(also called background dictionary in the sparse representation
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based methods) than the commonly used manifold ranking
model [6], [21].

In short, the contributions of this paper are summarized as
follows:

(1) Unlike existing graph-based methods that employ only a
single graph, our major contribution lies in a two-stage-graphs-
based salient object detection method, in which two graphs
having the same nodes but different edges are employed.
More importantly, in the second-stage graph of our proposed
method, the regionally spatial consistency and adjacently
spatial consistency among graph nodes are simultaneously
considered, thus facilitating saliency detection in complex
scenes.

(2) The second contribution is a WJRSR model, which
replaces the commonly used manifold ranking model [6], [21]
to compute the saliency value of each node in the first-stage
graph.

(3) Especially, the second stage in our proposed method
is generic enough to be integrated in existing salient object
detectors to improve their performance.

The reminder of this paper is organized as follows.
Section II reviews the most related works. The proposed
salient object detection model is described in Section III in
detail. In Section IV, experiments are conducted to validate the
effectiveness and superiority of the proposed method. Finally,
Section V concludes the paper.

II. RELATED WORK

In the literature, a growing body of research has been
devoted to salient object detection [4]–[8], [22]–[30]. In this
section, we will review the works most related to ours,
including sparse representation based methods and graph-
based methods for salient object detection. Besides, deep
convolutional neural networks (CNNs) based salient object
detection has been a research hotspot recently, which will also
be reviewed in this section.

A. Sparse Representation Based Salient Object Detection

Sparse representation (SR) theory has been applied in salient
object detection due to its efficiency. SR based methods first
construct an over-complete dictionary. Then, the input image
is sparsely reconstructed by the dictionary. Saliency is mea-
sured according to the coding length or reconstruction errors.
In [31], [32], the center patch was sparsely reconstructed by
its surroundings, and saliency was measured by the coding
length or residual. These methods usually assigned higher
saliency values to the object boundaries, as the surroundings
were already included in the dictionary. Afterwards, the image
boundary regions were extracted as the background templates
to sparsely reconstruct the image [4], [5]. Recently, a Laplacian
regularization term was imposed on the sparse representation
coefficients to take the local spatial consistency into account
in [33]. In [22], a compact background dictionary was learned
for sparse reconstruction, such that the background regions
could be well reconstructed and could be discriminated from
the foreground regions.

Fig. 3. Diagram of the proposed salient object detection method.

B. Graph-Based Salient Object Detection

Graph theory is another important theory that was success-
fully applied in salient object detection. In [34], saliency values
were computed based on the equilibrium distribution over map
locations. Afterwards, saliency was measured by averaging
the transmitted information in view of information maximiza-
tion [35]. Chang et al. [36] improved visual attention by
integrating the saliency and objectness into a graphical model.
The salient object was segmented via a hierarchical model
which efficiently utilized the concavity cue [16]. Recently,
salient regions were detected by optimizing a submodular
objective function that integrated the similarity and “facility”
costs [17]. Saliency was computed via a Conditional Random
Field aggregation model [37]. In [6], the image elements were
ranked according to their similarities with the background
and foreground cues. Saliency was propagated by using the
teaching-to-learn and learning-to-teach strategies [18]. Alter-
natively, saliency was measured on a graph based on jointly
considering the local consistency and global contrast [8],
and saliency detection was conducted by a two-stage scoring
scheme [21].

C. Deep Convolutional Neural Networks Based Salient
Object Detection

Recently, deep convolutional neural networks (CNNs) have
achieved many successes in salient object detection. Li and
Yu [38] presented a neural network architecture, which had
fully connected layers on top of CNNs responsible for fea-
ture extraction at three different scales. In [39], the authors
proposed a CNNs-based salient object detection architecture
working in a global-to-local and coarse-to-fine manner. In [40],
a pixel-level fully convolutional stream and a segment-wise
spatial pooling stream were designed to complement each
other. In general, these methods achieve better performance
than traditional methods.

III. PROPOSED SALIENT OBJECT DETECTION

In this section, we will describe the proposed salient object
detection system. The diagram of the proposed method is
illustrated in Fig. 3. The proposed system consists of four
components: feature extraction; graph-based weighted joint
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robust sparse representation; graph-based manifold ranking;
and post processing. Each part is elaborated below.

A. Feature Extraction

In our proposed method, we consider the superpixels instead
of pixels as the image elements. The input image I is initially
over-segmented into N superpixels by the simple linear iter-
ative clustering (SLIC) algorithm [41] due to its simplicity
and efficiency. For each superpixel, a feature vector xi ∈ Rm

of dimension m = 9 is constructed, which covers the color
features of RGB, HSV, and CIELab. Traditionally, per-pixel
feature vector is converted to per-superpixel feature vector
through averaging. However, this appears to perform well only
if the scene is characterized by simple color information and
texture, whereas in nonhomogeneous regions and complex
scenes it fails to maintain robustness. Instead, we obtain the
per-superpixel feature vector by

xi = 1

C

ni�

j=1

w j i f j , (1)

where f j ∈ Rm×1 is the feature vector of the pixel j within
the superpixel i . ni is the number of pixels in the superpixel i .
C is a normalization constant. w j i is the distance weight and
is computed by

w j i = exp

�
−
��p j − pi

��2
2

2 ∗ σ 2
p

�
, (2)

where pi and p j are the positions of the centers of the super-
pixel i and the pixel j within the superpixel i , respectively.
σp is a scalar, and is set to

√
2.

Finally, horizontally stacking the feature vectors of all
superpixels produces the feature matrix X ∈ Rm×N for the
input image, i.e., X = [x1, x2, . . . , xN ] ∈ Rm×N .

B. Stage 1: Graph-Based Weighted Joint Robust
Sparse Representation

In this section, we will describe the first stage of the
proposed method, which consists of three parts: graph con-
struction, weighted joint robust sparse representation model,
and saliency measure.

1) Graph Construction: At the first stage, an undirected
regular graph is constructed G1 = (V1, E1), where the nodes
V1 are the superpixels. As illustrated in Fig. 4(b), each node
is connected to its neighboring ones, which considers a spatial
consistency within a local neighborhood, i.e., the adjacently
spatial consistency, in light of the observation that a super-
pixel and its neighbors are likely to share similar appearance
and thereby similar saliency values. In addition, the image
boundary nodes, as shown in Fig. 4(b), are selected as the
background seed nodes according to the boundary prior [19].

The edge weights are defined as

wG1
i j =

⎧
⎪⎨

⎪⎩
exp

�
−
��xi − x j

��2
2

2σ 2
G1

�
, i f i and j are connected

0, otherwi se.

(3)

where σG1 is a scalar and is experimentally set to 5.

Fig. 4. Graph G1 at the first stage. (a) Original image. (b) Graph G1. Any
node is connected to its neighbors, as shown in the area delineated by the
green curve. Besides, the boundary nodes are selected as the background seed
nodes, as shown by the nodes marked by blue color in (b).

Fig. 5. Illustrations of the proposed WJRSR against the traditional manifold
ranking based and SR based methods. (a) Original images; (b) MR; (c) SR;
(d) RSR; (e) Proposed WJRSR; (f) Ground truth. The boundary regions are
selected as the background seed nodes (background dictionary).

2) Weighted Joint Robust Sparse Representation Model for
the Computing of Saliency Values: Given the graph G1,
the way the saliency values of nodes are calculated is of great
importance. Most graph-based saliency detection methods
adopt manifold ranking to compute the saliency value of each
node [6]–[8], [21]. However, manifold ranking is sensitive to
the initial saliency values of nodes. It becomes unreliable when
the seed nodes are mixed with noise, producing undesirable
detection results. For example, as shown in the first two
rows of Fig. 5(b), when parts of foregrounds reach the image
boundary, manifold ranking fails at identifying the foreground
objects.

Instead, we apply a weighted joint robust sparse representa-
tion (WJRSR) model to compute the saliency values of nodes.
More specifically, the proposed WJRSR model is based on the
robust sparse representation (RSR) rather than the traditional
sparse representation (SR). Compared to the traditional SR
model, RSR model replaces the least squared errors with
the sparse reconstruction errors [42], thus allowing the RSR
model to be less sensitive to the selection of background
seed nodes (also called background dictionary in the RSR
model). As shown in the first two rows of Fig. 5(d) and (e),
the RSR model and the proposed WJRSR model can identify
most foreground regions and background regions, even if the
salient object appears around the image boundary. Besides,
when applied to the detection of salient objects, the RSR
model possesses higher distinctiveness between the foreground
objects and their backgrounds than the SR model. As shown
in the last two rows of Fig. 5(d) and (e), the salient objects
can be more uniformly highlighted and the background noise
can also be better suppressed by the RSR model, as opposed
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Fig. 6. Quantitative comparisons of the proposed WJRSR model with MR,
RSR, and SR models on MSRA10K. (a) PR Curves; (b) F-measure Curves;
(c) Mean Absolute Error (MAE). The MSRA10K dataset, PR, F-measure, and
MAE evaluation metrics will be discussed in Section IV.

to the SR model. It can be also found from Fig. 6 that the
RSR model achieves better performance than the traditional
SR model. Besides, the proposed WJRSR model consistently
outperforms the previous MR and RSR models when being
measured based on the metrics, such as PR, F-measure and
MAE. In the following, we will describe the WJRSR model
in detail.

a) Joint robust sparse representation (JRSR) model:
Based on the adjacently spatial consistency defined by the
graph G1, the superpixel to be tested and its neighbors share
similar appearances and thereby will have more or less the
same saliency values. This implies that their representation
coefficients when sparsely reconstructed using the same dic-
tionary will look similar. As a result, a row-sparsity constraint
is imposed on the representation coefficients of the superpixel
to be tested and its neighbors, so that only few rows of the
representation coefficients matrix are zero. Besides, the back-
ground seed nodes are taken as the background dictionary in
the RSR model, which promotes the global contrast.

We horizontally stack the feature vectors of each
superpixel to be tested and its neighbors, i.e., Xi =

xi , xi−1, xi−2, . . . , xi−Ni

�
, where xi−1, xi−2, . . . , xi−Ni are

the feature vectors of the neighboring superpixels belonging
to the superpixel i . Based on the above discussions, we for-
mulate a joint robust sparse representation (JRSR) model for
computing the saliency value of the superpixel i as:

min
Zi ,Ei

���Zi
���

1,2
+ λ
���Ei
���

2,1

s.t . Xi = DZi + Ei . (4)

Here, D is the background dictionary, i.e., the background seed
nodes. Zi and Ei are the representation coefficients matrix
and reconstruction errors matrix, respectively.

��Zi
��

1,2 is the
l1,2- norm of Zi , and defined as

��Zi
��

1,2 = �
j

��Zi ( j, :)��2,

where Zi ( j, :) is the j th row of Zi .
��Zi ( j, :)��2 is the l2-norm

of Zi ( j, :). ��Ei
��

2,1 is the l2,1- norm of Ei , and defined as
��Ei
��

2,1 = �
k

�
j

�
Ei ( j, k)

�2, where Ei ( j, k) is the ( j, k)th

entry of Ei . Similar to Xi , Zi and Ei are the matrices
which horizontally stack the representation coefficients vectors
and reconstruction errors vectors of the superpixel i and its
neighbors, respectively, i.e., Zi = 


zi , zi−1, zi−2, . . . , zi−Ni

�

and Ei = 

ei , ei−1, ei−2, . . . , ei−Ni

�
.
��Zi
��

1,2 achieves the
adjacently spatial consistency, and enforces the superpixel

Fig. 7. Illustrations of the superiority of the WJRSR model over the JRSR
model. (a) Original images; (b) Proposed JRSR model in Eq. (4); (c) Proposed
WJRSR model in Eq. (5); (d) Ground truth.

to be tested and its adjacent superpixels to be with similar
representation coefficients under the same dictionary.

b) Weighted JRSR (WJRSR) model: As defined by
Eq. (4), the representation coefficients for each superpixel
and its neighboring ones are assumed to be similar if the
“row-sparsity” constraint is directly imposed on the coefficient
matrix in the JRSR model. This assumption seems reasonable
for the homogeneous regions, but it is no longer valid for those
nonhomogeneous regions, especially for the object boundaries.
For example, as shown in Fig. 7(b), some backgrounds (fore-
grounds) are mistakenly labeled as foregrounds (backgrounds)
at the object boundary. To achieve both the diversity for the
nonhomogeneous regions and the consistency for the homo-
geneous regions, we introduce a weight matrix Qi , leading to
a weighted JRSR (WJRSR) model:

min
Zi ,Ei

���Zi Qi
���

1,2
+ λ
���Ei
���

2,1

s.t . Xi = DZi + Ei , (5)

where Qi is defined as

Qi =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 qi−1 · · · 0
...

...
. . .

...
0 0 · · · qi−Ni

⎤
⎥⎥⎥⎦. (6)

Here, qi−k , k = 1, 2, . . . , Ni is the feature similarity measure
of the superpixel i and its neighboring superpixel k, and is
computed by Eq. (3). Therefore, the row-sparsity constraint
enforces the representation coefficients associated with each
superpixel to be tested and its neighboring ones to be similar in
case they share similar appearance, but not vice versa. This not
only imposes the consistency for the homogeneous regions, but
also preserves the diversity for the nonhomogeneous regions.
This is different from the JRSR model defined by Eq. (4).
Thanks to this scheme, we can observe from Fig. 7(c) that the
WJRSR model accurately detects the foreground regions and
background regions even at the object boundary.

Moreover, the proposed WJRSR model is different from
WSC [43]. First, WSC [43] is based on the SR model, while
our proposed WJRSR model is based on the RSR model,
which is superior to the SR model for salient object detection
(as discussed in Fig. 5). Secondly, the penalty weights in
WSC [43] are defined to be inversely proportional to the
appearance similarities between the superpixels to be tested
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Fig. 8. Illustrations of the superiority of the proposed WJRSR model over
WSC [43]. (a) Original images; (b) WSC; (c) WJRSR; (d) Ground truth.

and the dictionary atoms. In contrast, our proposed WJRSR
model defines the weights as the appearance similarities
between the superpixels to be tested and their adjacently
spatial neighbors. Thirdly, WSC [43] computes the saliency
value of each superpixel independently, while our proposed
WJRSR model considers the adjacently spatial consistency
among superpixels. The aforementioned differences make the
proposed WJRSR model more powerful than WSC [43]. For
example, as shown in the first two rows of Fig. 8, WSC [43]
obtains incomplete detection results, whereas our proposed
WJRSR model gets more wholeness of the salient objects.
It can also be obviously found from the last two rows of Fig. 8
that our proposed WJRSR model achieves better foreground
uniformity than WSC [43] does.

c) Optimization: For the sake of clarity, we remove the
subscript index of the matrices in Eq. (4), and the WJRSR
model in Eq. (5) can be rewritten as

min
Z̃,Ẽ

���Z̃ Q̃
���

1,2
+ λ
���Ẽ
���

2,1

s.t . X̃ = DZ̃ + Ẽ . (7)

This optimization model is convex and can be solved
efficiently. We first convert it to the following equivalent
problem:

min
J,Z̃,Ẽ

�J�1,2 + λ
���Ẽ
���

2,1

s.t . X̃ = DZ̃ + Ẽ,

Z̃ Q̃ = J. (8)

In this paper, to optimize the objective function defined in
Eq. (8), we adopt the ADMM method [44] which minimizes
the following augmented Lagrange function:

L = �J�1,2 + λ
���Ẽ
���

2,1
+
�
Y1, X̃ − DZ̃ − Ẽ

�

+
�
Y2, Z̃ Q̃− J

�
+ μ

2

����X̃ −DZ̃ − Ẽ
���

2

F
+
���Z̃ Q̃− J

���
2

F

�
,

(9)

where Y1 and Y2 are Lagrange multipliers, and μ > 0 is a
penalty parameter.

The optimization procedure is outlined in Algorithm 1. The
detailed solving process is shown in Supplementary Material.

Algorithm 1 Solving the Optimization model in Eq. (9)

Input: Feature matrix X̃ , weight matrix Q̃, and parameter λ.
Output: Z̃ and Ẽ .
1: intialize: Z̃ = 0, Ẽ = 0, Y1 = 0, Y2 = 0, μ = 1, μmax =

1010, and ρ = 1.1.
2: repeat
3: Fix the others and update J :

J = arg min
J

1

μ
�J�1,2 + 1

2

����J − (Z̃ Q̃ + 1

μ
Y2)

����
2

F
.

4: Fix the others and update Z̃ by updating each column of
Z̃ :

z̃k = (A + Q̃i,i I )−1ci ,

where A = Q̃−1 DT D, Q̃i,i is the (i, i) entry of Q̃, and
ci is the i th column of the matrix C , which is formulated
as

C = Q̃−1
�

DT
�

X̃ − Ẽ + Y1

μ

�
+ Q̃(J − Y2

μ
)

�
.

5: Fix the others and update Ẽ :

Ẽ = arg min
Ẽ

λ

μ
�E�2,1 + 1

2

����Ẽ −
�

X̃ − DZ̃ + Y1

μ

�����
2

F
.

6: Update the multipliers:

Y1 = Y1 + μ
�

X̃ − DZ̃ − Ẽ
�
.

Y2 = Y2 + μ
�

Z̃ Q̃ − J
�
.

7: Update the parameter μ: μ = min (ρμ,μmax)
8: until Convergence: X̃ − DZ̃ − Ẽ → 0 and Z̃ Q̃ − J → 0

Through Algorithm 1, we can obtain the optimal represen-
tation coefficients matrix Zi ∗ and reconstruction errors matrix
Ei ∗ for Xi . Then, the optimal z∗

i and e∗
i are extracted from

Zi ∗ and Ei ∗, respectively. Similarly, we are able to get the
optimal representation coefficients vectors and reconstruction
errors vectors corresponding to the other superpixels. Thus,
we can obtain the optimal representation coefficients matrix
Z∗ = [z∗

1, z∗
2, . . . , z∗

N ] and the optimal reconstruction errors
matrix E∗ = [e∗

1, e∗
2, . . . , e∗

N ] for the input image.
3) Saliency Measure: In this part, we will describe how we

define the saliency measures based on the reconstruction errors
and representation coefficients.

a) Saliency measure based on reconstruction errors:
Given a background dictionary D, each column of the optimal
sparse errors matrix E∗ may contain the salient information
of each superpixel that is distinct from the background.
Generally, a superpixel will be more salient if it has larger
reconstruction errors with respect to the background dictio-
nary. Hence, we define the reconstruction errors based saliency
measure salE (i) for the superpixel i as

salE (i) = 1 − exp

�
−�E∗(:, i)�2

2

2σ 2
E

�
, (10)

where σE is a scalar parameter and is experimentally set to 1.
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Fig. 9. Comparisons of representation coefficients between (a) background
superpixel and (b) foreground superpixel.

b) Saliency measure based on representation coefficients:
In addition to the reconstruction errors, the saliency value
of each superpixel can also be determined by its represen-
tation coefficients to some extent. For example, as shown
in Fig. 9, when sparsely reconstructed by the same background
dictionary, a background superpixel gains its representation
coefficients with low energy, while a foreground superpixel
gains its representation coefficients with high energy. This is
because the background dictionary has lower contrast with the
background superpixel but higher contrast with the foreground
superpixel. Based on the observations, we define the repre-
sentation coefficients based saliency measure salZ (i) for the
superpixel i as

salZ (i) = 1 − exp

�
−�Z∗(:, i)�2

2

2σ 2
Z

�
, (11)

where σZ is a scalar and is experimentally set to
√

2.
The two saliency measures salE and salZ are integrated,

resulting in the saliency measure for the superpixel i

sal E_Z (i) = α ∗ salE (i) + (1 − α) ∗ salZ (i), (12)

where α ∈ (0, 1) is a balance weight and is experimentally set
to 0.2.

The pixel-level saliency map is obtained by equaling the
saliency value of each pixel to that of its corresponding
superpixel. In order to suppress the noise, the object-based
Gaussian model [4], [5] is further applied to refine the saliency
detection results. In the subsequent processing at the second
stage, we again transform the pixel-level saliency map to
superpixel-level saliency map. Each superpixel achieves its
saliency value by averaging the saliency values of the pixels
within it. The refined results are denoted as salG1 .

C. Stage 2: Graph-Based Manifold Ranking

In this section, we will describe the second stage of the
proposed method, which consists of graph construction and
graph-based manifold ranking.

1) Graph Construction: The coarse detection results
obtained from the first stage help to locate the potential
background region RB and foreground region RF if a low
threshold threlow and a high threshold threhigh are set.
Those superpixels with saliency values lower than threlow

are labeled as background ones, while those supeprixels with
saliency values higher than threhigh are labeled as foreground
ones. To ensure the accuracy of the potential background

Fig. 10. Graph G2 at the second stage. (a) Original image. (b) Graph G2. The
nodes marked by red color represent the foreground superpixels and the nodes
marked by blue color represent background superpixels. In this graph, each
node is connected to its neighboring nodes, as shown in the area delineated
by the green curve. Besides, any pairs of the red nodes are connected, and
any pairs of the blue nodes are connected, which are not marked for clarity.

and foreground regions detection, we set threlow = 0.8 ∗
mean(salG1) and threhigh = 2 ∗ mean(salG1). Based on the
potential background and foreground regions, we construct a
novel undirected graph G2 = (V2, E2), where nodes are the
superpixels. As shown in Fig. 10(b), the edges of this graph
are composed of three parts:

E
1
2: Each node is connected to its neighboring nodes.

E
2
2: Any pairs of the potential background nodes are con-

nected.
E3

2: Any pairs of the potential foreground nodes are con-
nected.

E
1
2 considers the local consistency within a local neighbor-

hood, i.e., the adjacently spatial consistency, which plays the
same role as that employed in the graph G1 at the first stage.
E2

2 treats any pairs of RB to be adjacent, which enforces a
consistency among the potential background nodes, resulting
in the background uniformity. E

3
2 treats any pairs of RF to

be adjacent, which enforces consistency among the potential
foreground nodes, leading to the foreground uniformity. E

2
2

and E
3
2 impose the regionally spatial consistency within the

background candidates and within the foreground candidates,
respectively. Furthermore, combining E

2
2 and E

3
2 can addi-

tionally enhance the discrimination between background and
foreground, thus improving the separation of the foreground
from the background. Similar to G1, the edge weight between
two nodes on G2 is defined as

wG2
i j =

⎧
⎪⎨

⎪⎩
exp

�
−
��xi − x j

��2
2

2σ 2
G2

�
, i f i and j are connected

0, otherwi se.

(13)

Here, σG2 is a scalar and is experimentally set to
√

8, which
is different from the first stage.

2) Graph-Based Manifold Ranking: At this stage, we ini-
tialize the saliency value of each node y = [y1, y2, . . . , yN ]T

with the saliency value of the coarse detection conducted in
the first stage, i.e.,

yi = salG1(i), i = 1, 2, . . . , N. (14)

Given the weight matrix W G2 =
�
wG2

i j

�

N×N
, we can obtain

the degree matrix DG2 = diag (d1, d2, . . . , dN ), where di =�
j

wG2
i j . Let f be the ranking function assigning rank values
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f = [ f1, f2, . . . , fN ]T . This can be obtained by solving the
following minimization problem:

f ∗ = argmin
f

1

2

N�

i, j=1

wG2
i j

�����
fi√
di

− f j 
d j

�����

2

2

+ β

2

N�

i=1

� fi − yi�2
2,

(15)

where β is a controlling parameter. The optimized solution is
given in [45] as:

f ∗ =
�

DG2 − γ W G2
�−1

y, (16)

where γ = 1
1+β , and γ is set to 0.99.

Then, the saliency value of the superpixel i at the second
stage is

salG2(i) = f ∗(i). (17)

Furthermore, salG1 and salG2 may contain noise in both
foreground and background regions, we integrate the detection
results of the two stages to complement each other by

salG1_G2 = salG1 + salG2

2
. (18)

D. Post Process

The pixel-level saliency map is first obtained from salG1_G2

by setting the saliency value of each superpixel to that of
the pixels within the superpixel. An enhanced pixel-level
saliency map salenhance is then obtained by using the fol-
lowing enhancement function:

g(x) = x + sgn(x − ε) ∗ exp(− x − ε

2σ 2
enhance

), (19)

where ε is an adaptive threshold based on the Otsus binary
threshold method [46]. σenhance is a predefined parameter to
control the level of contrast, and is set to 1. sgn(·) is a sign
function. Here, x denotes the saliency value of a pixel.

Generally, salient object detection is essentially a binary
segmentation problem [47] that extracts the entire salient
objects from the background. To advance the binary segmen-
tation, we apply the Max-Flow method [48] on salenhance to
generate a foreground mask sal M F . Similarly, considering that
the binary saliency map sal M F may also contain noise in both
foreground and background regions, we get the final saliency
map as formulated by

sal post = salenhance + sal M F

2
. (20)

It should be noted that the post process can actually improve
the performance of the proposed method to some extent. How-
ever, it depends on the pre-detection results of the proposed
two-stage graphs before the post process. In other words,
the post process may improve the performance in case the
pre-detection results are good, but will get worse otherwise.
For example, as shown in Fig. 11, the post-process operation
improves the performance when the proposed two-stage graphs
achieve good detection results (as shown in the first two rows
of Fig. 11), but degrades the performance when the proposed

Fig. 11. Illustrations of the improvements of the post-process for the
performance of the proposed method. (a) Original images; (b) Saliency maps
obtained by the proposed two-stage graphs without post-process; (c) Saliency
maps refined by the post-process; (d) Ground truth.

Fig. 12. Illustrations of superiority of the proposed post-process. (a) Original
images; (b) Saliency maps obtained by the proposed two-stage graphs without
post-process; (c) Saliency maps refined by the post-process in [20] and [49];
(d) Saliency maps refined by the proposed post-process; (e) Ground truth.

two-stage graphs achieve unsatisfactory detection results (as
shown in the last two rows of Fig. 11).

Moreover, compared with the post process in [20] and [49],
the proposed post-process can better improve the performance
of salient object detection. As shown in Fig. 12, some fore-
ground regions are suppressed instead of being promoted to
some extent by the post-process in [20] and [49]. While the
foreground regions and the background regions are further
promoted and suppressed, respectively, by our proposed post-
process.

E. Summary

To recapitulate, the proposed salient object detection method
is summarized as follows:

(1) Extract features for each superpixel by Eq. (1);
(2) Compute the coarse saliency map salG1 at the first

stage;
(3) Compute the saliency map salG2 at the second stage;
(4) Compute the integrated saliency map salG1_G2 ;
(5) Obtain the final saliency map sal post via post process

operations.
Fig. 13 illustrates the saliency detection results obtained

by the main phases of the proposed method. As shown
in Fig. 13(d), most background and foreground regions are
identified in the first stage, and they become more uniform
and discriminative through the refinement in the second stage
(See the example in Fig 13(e)).
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Fig. 13. Saliency maps obtained by the main phases of the proposed method.
(a) Original images; (b)-(d) Saliency maps obtained from the first stage:
(b) based on the reconstruction errors; (c) based on the representation
coefficients; (d) by fusing (b) and (c); (e) Saliency maps obtained from
the second stage; (f) Saliency maps obtained by fusing (d) and (e); (g) Final
saliency maps via post process operations; (h) Ground truth.

F. Complexity Analysis

Firstly, the computational complexity at the first stage can be
analyzed as follows: suppose the data matrix X and dictionary
D are with the sizes of m × N and m × K , respectively. Then,
the coefficients matrix Z has size of K × N . As discussed
in [42], the computational complexity of Algorithm 1 at the
first stage is mainly determined by the computation burden
of updating the matrix Z . Theoretically, the computational
complexity of Algorithm 1 is O(r K 3 N), where r is the
number of iterations needed for convergence.3 It demonstrates
that the number of dictionary atoms K has a greater impact
on the computational complexity of the proposed Algorithm 1
than the other parameters. In the proposed method, K is set
to the number of boundary superpixels (about 49) and is
far smaller than the total number of superpixels N (about
200). This makes the computational cost of the proposed
Algorithm 1 acceptable.

Next, we will discuss the computational complexity at
the second stage. The computational complexity of the mani-
fold ranking model at the second stage mainly depends on the
matrix inverse operation in Eq. (16). The matrices DG2 and
W G2 are both with the size of N × N . The computational
complexity of the manifold ranking model is thus O(N3).
Therefore, the total computational complexity of our proposed
method is O(r K 3 N) + O(N3).

IV. EXPERIMENTS AND ANALYSIS

In this section, a number of experiments are conducted
to validate the effectiveness and superiority of the proposed
salient object detection method.

Datasets: We evaluate the proposed method on three
benchmark datasets, including MSRA10K [50], ECSSD [51],
and DUT-OMRON [6], [7]. MSRA10K [50] contains
10000 images with simple scene, most of which contain a
single object with high contrast to background. ECSSD [51]
contains 1000 images with structurally complex scene. Most
images in this dataset contain multiple objects belong-
ing to various categories. DUT-OMRON [6], [7] contains
5168 images with cluttered background, most of which have
one or more objects with different scales and locations.

3Note that we assume that all the iterations for updating Zi , i = 1, 2, . . . , N
are approximately equal to r here.

Fig. 14. Illustrations of parameters setting. It is noted that the F-measure
curves for λ = 0.01, λ = 1, and λ = 10 overlap in (b).

Evaluation Metrics: Multiple widely used evaluation met-
rics are used to evaluate the proposed method, including
precision-recall curve [52], F-measure [52], mean absolute
error (MAE) [53]. Here, the precision value is defined as
the ratio of salient pixels correctly assigned to all pixels of
the extracted regions, while the recall value refers to the
percentage of detected salient pixels with respect to the ground
truth data. For a saliency map, we generate a set of binary
images by using different thresholding values in the range of
[0, 1]. The precision/recall pairs of all the binary maps are
computed to plot the precision-recall curve [52]. F-measure is
used as the overall performance measure:

F = (1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
, (21)

where β2 = 0.3 as suggested in [52] to emphasize the
precision. The MAE computes the average difference between
the saliency map and the ground truth [53].

A. Parameters Setup

The superpixel number N has an important impact on the
performance of the proposed method. Besides, the parameter λ
in Eq. (4) balances the two constraints of the proposed WJRSR
model. We set the two important parameters by fixing one
and tuning the other on ECSSD within the first stage of our
proposed method.

It can be seen from Fig. 14(a) that WJRSR gets good
performance when N = 50, 100, 150, and 200. However,
the F-measure curve gets high values over a suddenly narrow
range when N = 250. This indicates that the detection
algorithm poorly distinguishes the foreground from the back-
ground, which would result in inaccurate location of potential
foreground and background regions. Considering that more
superpixels are beneficial to detecting the salient object in the
case of nonhomogeneous regions and complex scene, we set
N = 200.

From Fig. 14(b), it can be viewed that WJRSR performs
similarly when λ = 0.01, 0.1, 1 and 10. But the F-measure
curve is obviously poor when λ = 100, which degrades the
localization accuracy of potential foreground and background
regions. In the following experiments, we set λ = 0.1.

B. Performance Comparisons on Each Stage

Fig. 15 provides the detection results of each stage in
our proposed method on ECSSD. It is obvious from Fig. 15
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Fig. 15. Performance comparisons of each stage on ECSSD. “Stage 1”
represents the saliency map salG1 obtained from the first stage. “Stage 2”
represents the saliency map salG2 obtained from the second stage. “Stage 1 +
Stage 2” represents the integrated saliency map salG1_G2 . “Post” represents
the final saliency map sal post . Mean F-measure value is computed with an
adaptive threshold, i.e., thre = 2

W×H
�W

i=1
�H

j=1 S(i, j), where S(i, j)
represents the saliency value of the (i, j)-th pixel in the saliency map S.
(a) PR Curves. (b) F-measure Curves. (c) Mean F-measure.

Fig. 16. Detection results of each stage. (a) Original images; (b) Stage 1;
(c) Stage 2; (d) Stage 1 + Stage 2; (e) Post; (f) Ground truth. Please refer to
Fig. 15 for the explanations of “Stage 1”, “Stage 2”, “Stage 1 + Stage 2”,
and “Post”.

that in our algorithm, compared with “Stage 1”, “Stage 2”
achieves higher PR curve when recall value is greater than
0.4 (Fig. 15(a)), much higher and wider F-measure curve
(Fig. 15(b)), and higher mean F-measure value (Fig. 15(c)).
Besides, because “Stage 1” and “Stage 2” are complemen-
tary to each other, the performance is further improved by
integrating the detection results of the two stages. “Stage 1
+ Stage 2” obtains better performance than “Stage 1” and
“Stage 2”, which can be easily seen from Fig. 15. Finally,
the performance can be further promoted by the post process.

Fig. 16 gives some visual examples of each stage in our
proposed method. It is viewed on Fig. 16(b) that “Stage 1” is
capable of locating the foreground objects but the uniformity
of the object does not look satisfactory. Fortunately, this can be
well addressed at “Stage 2”, leading to much better foreground
uniformity and background suppression, which is easily seen
from Fig. 16(c). Besides, it can be found from Fig. 16(d) that
“Stage 1 + Stage 2” achieves more accurate saliency maps
than “Stage 1” and “Stage 2”. The detection results are closer
to ground truth with the aid of the post process.

C. Comparisons With State-of-the-Art Methods

In this section, we validate the effectiveness and supe-
riority of the proposed method via visual and quantita-
tive comparisons with 20 state-of-the-art methods, including
MST [20], TLLT [18], BSCA [54], DSR [5], WSC [43],
MBD [49], MR [7], RBD [55], HS [51], PCA [56], TD [57],
GC [58], DCLC [59], RW_MR [21], MAP [60], GS [19],
HCT [61], BL [62], DRFI [63], and MILPS [64]. Among

these methods, GS [19], BSCA [54], RBD [55], MST [20],
RW_MR [21], MR [7], TLLT [18], MAP [60], and DCLC [59]
are graph based state-of-the-art methods. Specifically, GS [19],
BSCA [54], RBD [55], and MST [20] are one-stage based
methods. While RW_MR [21], MR [7], TLLT [18], MAP [60],
and DCLC [59] are two-stage scoring based methods. The
other methods, i.e., MBD [49], HS [51], WSC [43], DSR [5],
HCT [61], BL [62], DRFI [63], MILPS [64], are other state-
of-the-art methods.

1) Visual Comparisons on Several Types of Images: To
efficiently validate the effectiveness and superiority of the
proposed method, we compare the proposed method with the
state-of-the-art methods on several types of images. Fig. 17
- Fig. 22 show the visual comparisons on different methods
for those images with a single object, multiple objects, large
object, object touching the image borders, similar appearance
between background and foreground, and complex scene,
respectively. Most methods deliver good results in the simple
cases, such as those images with a single object (in Fig. 17),
but fail to produce satisfactory results in more complex cases.
In contrast, the proposed method can not only extract the
salient object accurately for those images with a single object,
but also offers pretty good detection in complex scenes.
Especially, it can be found that the proposed two-stage graphs
achieve much better performance in foreground uniformity as
well as background suppression than the graph based state-of-
the-art methods.

For those images with multiple objects (in Fig. 18), our
proposed method can extract all the salient objects. Especially,
as shown in the second and fourth rows of Fig. 18, those multi-
ple salient objects can also be well separated from background
by using our proposed method. For those images with large
objects (in Fig. 19), our proposed method is able to detect
the entire salient object, whereas most of the other methods
just detect parts of the salient objects. For those images with
salient object touching the image borders (in Fig. 20), it is
difficult to segment the entire object, especially for those
boundary prior based methods, i.e., BSCA [54], RW_MR [21],
MR [7], RBD [55], MBD [49], WSC [43], DSR [5], and
MST [20]. In contrast, our proposed method can still extract
the entire object, which may owe to the WJRSR model at our
first stage. For those images with similar appearance between
background and foreground (in Fig. 21), our proposed method
can successfully separate the foreground from the background.
On the contrary, such similar appearances confuse most of
the other algorithms. For those images with complex scene
(in Fig. 22), our proposed method can identify the salient
object pretty accurately, but most of the other methods fail,
especially in the second row of Fig. 22.

2) Quantitative Comparisons: Fig. 23 provides the PR and
F-measure curves on different methods. From Fig. 23, it is
clear that the proposed method is competitive with DRFI [63]
and MILPS [64], and performs better than the other methods
in terms of the PR curves for MSRA10K and ECSSD. It also
demonstrates that the proposed method scores the best for
the three benchmark datasets in terms of F-measure curves
based on the fact that the proposed method obtains the highest
F-measure values over the widest range for the three datasets.
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Fig. 17. Visual comparisons on different methods for those images with a single object. (b)-(e) are one-stage based methods. (f)-(j) are two-stage scoring
based methods. (k)-(r) are other state-of-the-art methods.

Fig. 18. Visual comparisons on different methods for those images with multiple objects. (b)-(e) are one-stage based methods. (f)-(j) are two-stage scoring
based methods. (k)-(r) are other state-of-the-art methods.

Fig. 19. Visual comparisons on different methods for those images with large object. (b)-(e) are one-stage based methods. (f)-(j) are two-stage scoring based
methods. (k)-(r) are other state-of-the-art methods.

Fig. 20. Visual comparisons on different methods for those images with object touching the image borders. (b)-(e) are one-stage based methods. (f)-(j) are
two-stage scoring based methods. (k)-(r) are other state-of-the-art methods.

This also indicates that the saliency values for the foreground
regions obtained by the proposed method are relatively larger,
while those for the background regions are smaller. As a result,
the separation of the foreground regions from the background
regions is more robust to the thresholding values by using
the proposed method than other methods. Moreover, as shown
in Table I, it is obvious that the proposed method achieves the
smallest MAE score among all the aforementioned methods
for the three benchmark datasets, which implies that the
detection results by the proposed method are the closest to

the ground truth. Especially, it is obvious that the proposed
method outperforms other graph-based ones. This also effi-
ciently verifies the superiority of the two-stage graphs over
the previous one-stage process and two-stage scoring.

D. Improvement of State-of-the-Art Methods

Fig. 24 illustrates some improved results by integrating
our second stage into different state-of-the-art salient object
detection methods. The coarse detection results used in our
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Fig. 21. Visual comparisons on different methods for those images with similar appearance between background and foreground. (b)-(e) are one-stage based
methods. (f)-(j) are two-stage scoring based methods. (k)-(r) are other state-of-the-art methods.

Fig. 22. Visual comparisons on different methods for those images with complex scene. (b)-(e) are one-stage based methods. (f)-(j) are two-stage scoring
based methods. (k)-(r) are other state-of-the-art methods.

Fig. 23. PR and F-measure curves on different methods for (a) MSRA10K, (b) ECSSD, and (c) DUT-OMRON.

proposed second stage are the detection results of the original
methods. It is obvious that those improved methods achieve
higher F-measure values over a wider range and smaller MAE
scores than their corresponding original methods.

For better understanding, Fig. 25 shows some visual exam-
ples to illustrate the improved results of our proposed second
stage on some state-of-the-art methods. More visual examples
can be found in the Supplementary Material. It can be easily
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TABLE I

THE MAE COMPARISONS ON DIFFERENT METHODS FOR (A) MSRA10K, (B) ECSSD, AND (C) DUT-OMRON

Fig. 24. Illustrations of the improvement of our proposed second stage on
some state-of-the-art methods. On the F-measure curves, “+” represents the
improved results by integrating the original method with our proposed second
stage. For example, “MR+” represents the improved results by integrating the
original “MR” method with our second stage. On the MAE bars, blue bars
represent the results obtained by the original methods, and red bars represent
the improved results by our second stage. For example, on the first group of
MAE bars, the left blue bar represents the MAE of the original “MR” method,
and the right red bar represents the improved result by integrating the original
“MR” with our second stage.

Fig. 25. Visual examples to illustrate the improvement of our proposed sec-
ond stage on some state-of-the-art methods. Please refer to Fig. 24 for the
explanation of “+”.

found that our second stage improves the state-of-the-art meth-
ods with much better foreground uniformity and background
suppression. The improved results are closer to ground truth.

E. Comparisons With Deep Learning Based Methods

In this section, we compare the proposed method with some
deep learning based methods, including BPDRR [65] and

Fig. 26. Quantitative comparisons with some deep learning based methods on
ECSSD. (a) PR curve; (b) F-measure curve; (c) Mean absolute error (MAE).

Fig. 27. Visual comparisons with some deep learning based methods on
ECSSD. (a) Original images; (b) BPDRR; (c) DSMT; (d) OUR; (e) Ground
truth.

DSMT [66]. More specifically, BPDRR [65] is based on the
autoencoders, and DSMT [66] is based on the convolutional
neural networks (CNNs). Fig. 26 and Fig. 27 show the
quantitative comparisons and visual comparisons, respectively.
More visual comparisons can be found in the Supplementary
Material. It can be noticed from Fig. 26 that the proposed
method performs better than BPDRR [65] but worse than
DSMT [66]. This demonstrates that deep CNNs have great
potential for salient object detection. However, it can also
be seen from Fig. 27 that DSMT [66] obtains blurry object
boundaries while the proposed method achieves more accurate
foreground objects, especially at the object boundaries. The
results of our proposed method are the closest to the ground
truth.
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TABLE II

AVERAGE EXECUTION TIME OF SEVERAL METHODS (SECONDS PER IMAGE)

F. Computational Complexity Comparison

Here, we list the average execution time of several state-of-
the-art methods and our proposed method on the MSRA10K
dataset [50]. These methods are all run on a PC with
an Intel(R) Core(TM) i7-4790 3.60 GHz CPU. As shown
in Table II, it will take about 2 seconds for our pro-
posed method to process an image of size 400 × 300,
which is faster than TLLT [18], DSR [5], WSC [43], and
PCA [56]. Besides, the total running time of the pro-
posed method for the MSRA10K [50], ECSSD [51], and
DUT-OMRON [6], [7] datasets is about 5.7 hours, 0.5 hours,
and 2.94 hours, respectively.

V. CONCLUSION

In this paper, we have performed salient object detection
via two-stage graphs. This is clearly different from most of
existing graph-based methods, which employ only a single
graph. As a result, the proposed method is shown to be
superior to the state-of-the-art methods in terms of the uniform
detection of foreground salient objects as well as the sup-
pression of background noise. In particular, the second stage
is generic enough to be integrated in existing salient object
detectors to improve their performance. In the future, we will
integrate the regionally spatial consistency and adjacently
spatial consistency in the deep CNNs architecture to further
improve the performance of our proposed method.
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